16 research outputs found

    Collaborative Estimation in Distributed Sensor Networks

    Get PDF
    Networks of smart ultra-portable devices are already indispensable in our lives, augmenting our senses and connecting our lives through real time processing and communication of sensory (e.g., audio, video, location) inputs. Though usually hidden from the user\u27s sight, the engineering of these devices involves fierce tradeoffs between energy availability (battery sizes impact portability) and signal processing / communication capability (which impacts the smartness of the devices). The goal of this dissertation is to provide a fundamental understanding and characterization of these tradeoffs in the context of a sensor network, where the goal is to estimate a common signal by coordinating a multitude of battery-powered sensor nodes. Most of the research so far has been based on two key assumptions -- distributed processing and temporal independence -- that lend analytical tractability to the problem but otherwise are often found lacking in practice. This dissertation introduces novel techniques to relax these assumptions -- leading to vastly efficient energy usage in typical networks (up to 20% savings) and new insights on the quality of inference. For example, the phenomenon of sensor drift is ubiquitous in applications such as air-quality monitoring, oceanography and bridge monitoring, where calibration is often difficult and costly. This dissertation provides an analytical framework linking the state of calibration to the overall uncertainty of the inferred parameters. In distributed estimation, sensor nodes locally process their observed data and send the resulting messages to a sink, which combines the received messages to produce a final estimate of the unknown parameter. In this dissertation, this problem is generalized and called collaborative estimation , where some sensors can potentially have access to the observations from neighboring sensors and use that information to enhance the quality of their messages sent to the sink, while using the same (or lower) energy resources. This is motivated by the fact that inter-sensor communication may be possible if sensors are geographically close. As demonstrated in this dissertation, collaborative estimation is particularly effective in energy-skewed and information-skewed networks, where some nodes may have larger batteries than others and similarly some nodes may be more informative (less noisy) compared to others. Since the node with the largest battery is not necessarily also the most informative, the proposed inter-sensor collaboration provides a natural framework to route the relevant information from low-energy-high-quality nodes to high-energy-low-quality nodes in a manner that enhances the overall power-distortion tradeoff. This dissertation also analyzes how time-correlated measurement noise affects the uncertainties of inferred parameters. Imperfections such as baseline drift in sensors result in a time-correlated additive component in the measurement noise. Though some models of drift have been reported in the literature earlier, none of the studies have considered the effect of drifting sensors on an estimation application. In this dissertation, approximate measures of estimation accuracy (Cramer-Rao bounds) are derived as a function of physical properties of sensors -- namely the drift strength, correlation (Markov) factor and the time-elapsed since last calibration. For stationary drift (Markov factor less than one), it is demonstrated that the first order effect of drift is asymptotically equivalent to scaling the measurement noise by an appropriate factor. When the drift is non-stationary (Markov factor equal to one), it is established that the constant part of a signal can only be estimated inconsistently (with non-zero asymptotic variance). The results help quantify the notions that measurements taken sooner after calibration result in more accurate inference

    Optimal Identical Binary Quantizer Design for Distributed Estimation

    Full text link
    We consider the design of identical one-bit probabilistic quantizers for distributed estimation in sensor networks. We assume the parameter-range to be finite and known and use the maximum Cram\'er-Rao Lower Bound (CRB) over the parameter-range as our performance metric. We restrict our theoretical analysis to the class of antisymmetric quantizers and determine a set of conditions for which the probabilistic quantizer function is greatly simplified. We identify a broad class of noise distributions, which includes Gaussian noise in the low-SNR regime, for which the often used threshold-quantizer is found to be minimax-optimal. Aided with theoretical results, we formulate an optimization problem to obtain the optimum minimax-CRB quantizer. For a wide range of noise distributions, we demonstrate the superior performance of the new quantizer - particularly in the moderate to high-SNR regime.Comment: 6 pages, 3 figures, This paper has been accepted for publication in IEEE Transactions in Signal Processin

    Cram\'er-Rao Bounds for Polynomial Signal Estimation using Sensors with AR(1) Drift

    Full text link
    We seek to characterize the estimation performance of a sensor network where the individual sensors exhibit the phenomenon of drift, i.e., a gradual change of the bias. Though estimation in the presence of random errors has been extensively studied in the literature, the loss of estimation performance due to systematic errors like drift have rarely been looked into. In this paper, we derive closed-form Fisher Information matrix and subsequently Cram\'er-Rao bounds (upto reasonable approximation) for the estimation accuracy of drift-corrupted signals. We assume a polynomial time-series as the representative signal and an autoregressive process model for the drift. When the Markov parameter for drift \rho<1, we show that the first-order effect of drift is asymptotically equivalent to scaling the measurement noise by an appropriate factor. For \rho=1, i.e., when the drift is non-stationary, we show that the constant part of a signal can only be estimated inconsistently (non-zero asymptotic variance). Practical usage of the results are demonstrated through the analysis of 1) networks with multiple sensors and 2) bandwidth limited networks communicating only quantized observations.Comment: 14 pages, 6 figures, This paper will appear in the Oct/Nov 2012 issue of IEEE Transactions on Signal Processin

    Spatial Whitening Framework for Distributed Estimation

    Full text link
    Designing resource allocation strategies for power constrained sensor network in the presence of correlated data often gives rise to intractable problem formulations. In such situations, applying well-known strategies derived from conditional-independence assumption may turn out to be fairly suboptimal. In this paper, we address this issue by proposing an adjacency-based spatial whitening scheme, where each sensor exchanges its observation with their neighbors prior to encoding their own private information and transmitting it to the fusion center. We comment on the computational limitations for obtaining the optimal whitening transformation, and propose an iterative optimization scheme to achieve the same for large networks. We demonstrate the efficacy of the whitening framework by considering the example of bit-allocation for distributed estimation.Comment: 4 pages, 2 figures, this paper has been presented at CAMSAP 2011; Proc. 4th Intl. Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP 2011), San Juan, Puerto Rico, Dec 13-16, 201
    corecore